A team of researchers has discovered a new artificial intelligence system that can help pathologists read biopsies more accurately and better detect and diagnose cases of breast cancer. The new system was described in a study published in the journal ‘JAMA Network Open.’ The study said the new system helped interpret medical images used to diagnose breast cancer that can be difficult for the human eye to classify, and it does so nearly as accurate or better as experienced pathologists.
"It is critical to get a correct diagnosis from the beginning so that we can guide patients to the most effective treatments," said Dr. Joann Elmore, the study's senior author and a professor of medicine at the David Geffen School of Medicine at UCLA.
An earlier research revealed that diagnostic errors occurred in about one out of every six women who had ductal carcinoma in situ (a noninvasive type of breast cancer), and that incorrect diagnoses were given in about half of the biopsy cases of breast atypia (abnormal cells that are associated with a higher risk for breast cancer). "Medical images of breast biopsies contain a great deal of complex data and interpreting them can be very subjective. Distinguishing breast atypia from ductal carcinoma in situ is important clinically but very challenging for pathologists. Sometimes, doctors do not even agree with their previous diagnosis when they are shown the same case a year later," said Elmore, who is also a researcher at the UCLA Jonsson Comprehensive Cancer Center.
The researchers compared its reading to independent diagnoses made by practicing US pathologists, to test the system. The artificial intelligence program came close to performing as well as doctors in differentiating cancer from non-cancer cases, the AI program outperformed doctors when differentiating DCIS from atypia, considered the greatest challenge in breast cancer diagnosis.
The system correctly determined whether scans showed DCIS or atypia more often than the doctors; it had sensitivity between 0.88 and 0.89, while the pathologists' average sensitivity was 0.70. (A higher sensitivity score indicates a greater likelihood that diagnosis and classification are correct.)
"These results are very encouraging. There is low accuracy among practicing pathologists in the U.S. when it comes to the diagnosis of atypia and ductal carcinoma in situ, and the computer-based automated approach shows great promise," Elmore said.